Paper-based potentiometric ion sensing.
نویسندگان
چکیده
This paper describes the design and fabrication of ion-sensing electrochemical paper-based analytical devices (EPADs) in which a miniaturized paper reference electrode is integrated with a small ion-selective paper electrode (ISPE) for potentiometric measurements. Ion-sensing EPADs use printed wax barriers to define electrochemical sample and reference zones. Single-layer EPADs for sensing of chloride ions include wax-defined sample and reference zones that each incorporate a Ag/AgCl electrode. In EPADs developed for other electrolytes (potassium, sodium, and calcium ions), a PVC-based ion-selective membrane is added to separate the sample zone from a paper indicator electrode. After the addition of a small volume (less than 10 μL) of sample and reference solutions to different zones, ion-sensing EPADs exhibit a linear response, over 3 orders of magnitude, in ranges of electrolyte concentrations that are relevant to a variety of applications, with a slope close to the theoretical value (59.2/z mV). Ion-selective EPADs provide a portable, inexpensive, and disposable way of measuring concentrations of electrolyte ions in aqueous solutions.
منابع مشابه
Potentiometric sensing utilizing paper-based microfluidic sampling.
A new approach to potentiometric sensing utilizing paper-based microfluidic sampling is studied in this work. A solid-contact ion-selective electrode and a solid-contact reference electrode are pressed against a filter paper into which the sample solution is absorbed. The filter paper acts simultaneously as a sampling unit and as a sample container during potentiometric sensing. The paper subst...
متن کاملPotentiometric detection of chemical vapors using molecularly imprinted polymers as receptors
Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determina...
متن کاملIodide selective membrane electrode based on copper (Π)-bis-Nphenilsalicyldenaminato complex
An iodide ion-selective PVC membrane sensor based on copper (Π)-bis-Nphenilsalicyldenaminatocomplex as a novel sensing material is successfully developed. Theelectrode showed a good selectivity for iodide ion with respect to common inorganic anions. Thesensor exhibited a good linear response with slope of _58.6 ± 0.4 mV per decade over theconcentration range of 5.0 × 10-6 to 1.0 × 10-1 mol L-1,...
متن کاملSchiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors
Ionophore incorporated PVC membrane sensors are well-established analyticaltools routinely used for the selective and direct measurement of a wide variety of differentions in complex biological and environmental samples. Potentiometric sensors have someoutstanding advantages including simple design and operation, wide linear dynamic range,relatively fast response and rational selectivity. The v...
متن کاملPerformance Evaluation of a Novel Potentiometric Membrane Sensor for Determination of Atorvastatin in Pharmaceutical Preparations
A novel potentiometric ion-selective PVC membrane sensor for analysis of atorvastatin (AT) in pharmaceutical preparations based on atorvastatin-(tetraphenyl borate), (AT-(TPB)2) as sensing element, tetraphenyl borate as additive and tris-2-ethyl-hexyl phosphate (TOP) as plasticizer solvent was prepared. The electrode shows a good Nernestian response over the concentration range of 0.09–5586 µ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 86 19 شماره
صفحات -
تاریخ انتشار 2014